Optical Realization of Bio-inspired Spiking Neurons In Electron Trapping Material Thin
نویسندگان
چکیده
A thin film of electron-trapping material (ETM), when combined with suitable optical bistability, is considered as medium for optical implementation of bio-inspired neural nets. The optical mechanism of ETM under blue light and NIR exposure has the inherent ability at the material level to mimic the crucial components of the stylized Hodgkin-Huxley model of biological neuron. Combining this unique property with high resolution capability of ETM, a dense network of bio-inspired neurons can be realized in a thin film of this infrared stimulable storage phosphore. The work presented here, when combined with suitable optical bistability and optical interconnectivity, has the potential of producing an artificial nonlinear excitable medium analogue to cortical tissue.
منابع مشابه
Realization of Receptive Fields with Excitatory and Inhibitory Responses on Equilibrium-State Luminescence of Electron Trapping Material Thin Film
Our theoretical modelings and experimental observations illustrate that the equilibrium-state luminescence of electron-trapping materials (ETMs) can be controlled to produce either excitatory or inhibitory responses to the same optical stimulus. Because of this property, ETMs have a unique potential in optical realization of neurobiologically based parallel computations. As a classic example, w...
متن کاملRealization of receptive fields with excitatory and inhibitory responses on equilibrium-state luminescence of electron trapping material.
Our theoretical modelings and experimental observations illustrate that the equilibrium-state luminescence of electron-trapping materials (ETMs) can be controlled to produce either excitatory or inhibitory responses to the same optical stimulus. Because of this property, ETMs have a unique potential in optical realization of neurobiologically based parallel computations. As a classic example, w...
متن کاملImproving the optical properties of thin film plasmonic solar cells of InP absorber layer using nanowires
In this paper, a thin-film InP-based solar cell designed and simulated. The proposed InP solar cell has a periodic array of plasmonic back-reflector, which consists of a silver layer and two silver nanowires. The indium tin oxide (ITO) layer also utilized as an anti-reflection coating (ARC) layer on top. The design creates a light-trapping structure by using a plasmonic back-reflector and an an...
متن کاملAn analytic model for the dynamics of electron trapping materials with applications in nonlinear optical signal processing
In this paper the optical mechanism and dynamics of electron trapping material under simultaneous illumination with two wavelengths is investigated. Our analytical model proves that the equilibrium state luminescence of such a material can be controlled to produce highly nonlinear behavior with potential applications in nonlinear optical signal processing and optical realization of nonlinear dy...
متن کاملDifference of Gaussians Type Neural Image Filtering with Spiking Neurons
This contribution describes a bio-inspired image filtering method using spiking neurons. Bio-inspired approaches aim at identifying key properties of biological systems or models and proposing efficient implementations of these properties. The neural image filtering method takes advantage of the temporal integration behavior of spiking neurons. Two experimental validations are conducted to demo...
متن کامل